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Abstract
We present an elegant and simple to implement framework for per-
forming out-of-core visualization and view-dependent refinement
of large terrain surfaces. Contrary to the recent trend of increas-
ingly elaborate algorithms for large-scale terrain visualization, our
algorithms and data structures have been designed with the primary
goal of simplicity and efficiency of implementation. Our approach
to managing large terrain data also departs from more conventional
strategies based on data tiling. Rather than emphasizing how to seg-
ment and efficiently bring data in and out of memory, we focus on
the manner in which the data is laid out to achieve good memory
coherency for data accesses made in a top-down (coarse-to-fine)
refinement of the terrain. We present and compare the results of us-
ing several different data indexing schemes, and propose a simple
to compute index that yields substantial improvements in locality
and speed over more commonly used data layouts.

Our second contribution is a new and simple, yet easy to gen-
eralize method for view-dependent refinement. Similar to several
published methods in this area, we use longest edge bisection in
a top-down traversal of the mesh hierarchy to produce a continu-
ous surface with subdivision connectivity. In tandem with the re-
finement, we perform view frustum culling and triangle stripping.
These three components are done together in a single pass over the
mesh. We show how this framework supports virtually any error
metric, while still being highly memory and compute efficient.

1 INTRODUCTION
With a vast number of publications over the last several decades on
level of detail creation and management of terrains and other height
fields, the trend of increasing interactivity, visual quality, and I/O
performance of published methods has generally come at the ex-
pense of algorithmic and implementation simplicity. Implementing
a fully functional, integrated out-of-core visualization system, with
support for accurate and fast view-dependent refinement, is in many
cases a considerable time investment. To address this problem, we
describe a simple to implement algorithm for improving the mem-
ory locality and minimizing the amount of data paging necessary,
as well as a general framework for fast view-dependent refinement.

Our approach to handling large terrains is to lay out the data in
an order that closely follows the order in which accesses to the ver-
tices of the terrain are made. In essence, our goal is to find a fixed
permutation of the list of all height field vertices that for a typical
access pattern yields (near) optimal cache behavior. Using an in-
dexing scheme that groups the mesh data by refinement level, we
demonstrate a considerable improvement in paging performance.
The issue of data paging to and from main memory is orthogonal
to our approach. By virtue of greatly improved coherency, an ex-
plicit paging scheme is often not necessary. Rather, this task can be
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delegated to the operating system. Indeed, we make use of memory
mapped files, using themmapsystem call, to associate main mem-
ory address space with the terrain data stored on disk. This general
framework allows different indexing schemes to be quickly inte-
grated, while still leaving open the possibility of more sophisticated
paging techniques for explicit data pre-fetching and management.
Note that we are not tied to using memory mapping, but propose
this as a simple, yet effective method for handling large terrains.

To accommodate fast display rates, it is essential to perform on-
the-fly simplification of the high resolution mesh. Similar to recent
algorithms for view-dependent refinement [8,17,19], we use recur-
sive edge bisection as a means of refining a coarse base mesh de-
fined over a regular grid of elevation points. Our method performs
a top-down traversal of the mesh. A problem common to most al-
gorithms based on top-down refinement is how to ensure that a con-
sistent mesh without cracks is built. We guarantee this property by
enforcing a nesting of the terms used in our view-dependent error
metric, thereby implicitly forcing parent vertices to be introduced
before their descendants. The details of this algorithm will be pre-
sented in Section 3. We here summarize some of its features:

Independence of error metric . The framework allows virtually
any error metric to be incorporated. The supplemental information
stored with the terrain data is essentially orthogonal to the choice
of error metric. As a consequence, implementing a different metric
requires only adding a handful of lines of code.

Memory efficiency . Per-vertex data is limited to position (para-
metric coordinates are optional), a scalar error term, and a scalar
term for encoding a bounding sphere.

Computational efficiency . The refinement algorithm makes a
single pass over the terrain, and is inherently output sensitive. That
is, the time needed to construct a decimated mesh is proportional
to the number of triangles it contains. The algorithm is also fast in
practice, as only a few simple operations are involved.

Efficient view culling and triangle stripping . Fast, hierar-
chical view culling is supported at no additional memory cost. The
recursive refinement of the terrain visits vertices in triangle strip
order, allowing the rendering to be performed in tandem with the
refinement.

Implicit mesh continuity . Due to the top-down approach and
the guarantees made on parent-child relations, the mesh is uncondi-
tionally a continuous surface, both within and outside the view vol-
ume. Thus, no dependencies need to be maintained and no costly
crack fixing has to be performed.

Near optimality . For a given accuracy, the top-down method pro-
duces meshes with only slightly more triangles than the minimal
number obtained using bottom-up simplification.

Asynchronous updates . Because a continuous mesh that cov-
ers the entire terrain is always produced, refinement and view
culling can be decoupled from the rendering stage. Using this ap-
proach, a dedicated rendering thread receives asynchronous mesh
updates from a (possibly slower) refinement thread.

Simplicity . The refinement algorithm is very simple to implement,
and requires only a few dozen lines of C code.



Before describing our algorithms, we will cover related work
in terrain visualization. We conclude the paper with experimental
results and directions for future work.

2 PREVIOUS WORK

In this section we discuss related work in large-scale terrain vi-
sualization. We will focus particularly on algorithms for view-
dependent refinement of terrains, and schemes for out-of-core pag-
ing and memory coherent layout of multiresolution data.

2.1 View-Dependent Refinement

Over the last several decades, there has been extensive work done in
the area of terrain visualization and level of detail creation and man-
agement. We will here limit our discussion to the more recent work
on fine-grained, view-dependent simplification and refinement of
terrain surfaces.

Gross et al. [13] were among the first to propose a method for
adaptive mesh tessellation at near interactive rates. Their technique
is based on a wavelet transform of the gridded data, from which
large detail coefficients are chosen for selective refinement. A win-
dowing technique is also described that allows some regions of the
mesh to be more refined than others. Lindstrom et al. [17] describe
an algorithm for interactive, view-dependent refinement of terrain.
They represent the terrain as a mesh with subdivision connectiv-
ity that is locally refined using recursiveedge bisection. The algo-
rithm conceptually works bottom-up, by recursively merging trian-
gles until a screen space error tolerance is exceeded. In actuality, a
coarse-grained simplification and refinement of rectangular blocks
is made, followed by a fine-grained per-vertex decimation within
each block. Due to this blocking, special care must be taken to en-
sure that no cracks form between the blocks. Handling this problem
in the context of asynchronous paging of blocks is non-trivial, and
enforcing dependencies between vertices can be costly.

Based on the work by Lindstrom et al., Hoppe extended his work
on progressive meshesto allow view-dependent refinement of ar-
bitrary meshes [14]. This technique was later specialized for ter-
rain rendering [15]. The run-time performance reported by Hoppe
places his method among the fastest ones published to date. How-
ever, the memory requirements of his method, while lower than
in [14], are still considerable. In addition, fully implementing his
algorithm is not an easy task.

Using the same space of meshes as in [17], Duchaineau et al. [8]
proposed several improvements over Lindstrom et al.’s method in
their ROAM algorithm. Instead of organizing the mesh as an
acyclic graph of its vertices, they suggest using a binary tree over
the set of triangles. Using this data structure, crack prevention is
made easier. Another significant contribution is the idea of main-
taining two queues for split and merge operations, which allows in-
cremental changes to the mesh to be made in order of importance,
while also allowing the refinement to be pre-empted whenever a
given time budget is reached. Unfortunately, robustly implementing
the dual-queue algorithm, not to mention the many other compo-
nents of their method, has proven difficult. Several other algorithms
based on edge bisection have since been published, with different
strengths and weaknesses in terms of visual accuracy and memory
and time complexity [3,10,19,23]. Most of these authors recognize
the inherent complexity of doing input sensitive bottom-up simpli-
fication, and use simple heuristics for output sensitive top-down re-
finement. In this paper, we present improvements over some of
these methods in several categories, including accuracy, mesh com-
plexity, memory usage, refinement speed, generality, and, most im-
portantly, ease of implementation.

2.2 Out-of-Core Paging and Data Layout
External memory algorithms [26], also known as out-of-core al-
gorithms, address issues related to the hierarchical nature of the
memory structure of modern computers (fast cache, main memory,
hard disk, etc.). Managing and making the best use of the memory
structure is important when dealing with large data structures that
do not fit in the main memory of a single computer. New algorith-
mic techniques and analysis tools have been developed to address
this problem, e.g. for geometric algorithms [1,11,18] and scientific
visualization [2,4].

In most terrain visualization systems [5,6,8,12,15–17,19,21] the
external memory component is essential for handling real terrain
and GIS databases. Hoppe [15] addresses the problem of construct-
ing a progressive mesh of a large terrain using a bottom-up scheme,
by decomposing the terrain into square tiles that are merged af-
ter independent decimation, and which are then further simplified.
Döllner et al. [7] address the issue of external memory handling
of large textures for terrain visualization. Reddy et al. [21] imple-
mented a custom VRML browser specialized for terrain visualiza-
tion, where efficiency is gained by combined use of multiresolu-
tion tiling, data caching, and predictive pre-fetching. The out-of-
core component of the large-scale terrain system presented by Pa-
jarola [19] is based on a decomposition of the domain into square
tiles, which are stored in a database that supports fast 2D range
queries. Efficient rendering is also achieved by organizing the set
of triangles into a single strip that follows the Sierpinski space fill-
ing curve. A similar technique is used in our refinement algorithm.

Whereas the prevailing strategy for terrain paging has been to
split the terrain up into large rectangular tiles of varying resolution
that are paged in on demand, and to optimize the size of these tiles
and the I/O path from disk to memory, our approach is instead to
optimize the data layout to improve the memory coherency—both
in-core and out-of-core—for a given access pattern. This approach
is in a sense orthogonal to the manner in which the data is paged in.
For simplicity, we leave it to the operating system to perform this
task.

3 VIEW-DEPENDENT REFINEMENT
The goal of view-dependent refinement is to build a mesh with a
small number of triangles that for a given view is a good approxi-
mation of the original, dense mesh. This construction is done con-
tinuously on-the-fly, and whenever the viewpoint changes the mesh
is updated to reflect the change. To measure how well the coarse
mesh approximates the original, one typically computes the devi-
ation between corresponding points on the two meshes in object-
space, and projects these errors onto the screen. Depending on
whether the mesh issimplifiedbottom-up orrefinedtop-down, tri-
angles are merged or split to ensure that the projected errors meet
some threshold or the mesh meets a given triangle budget.

In this section, we present a framework for performing top-down,
view-dependent refinement of the terrain surface. We show how a
single procedure can be used to efficiently perform the refinement,
cull the mesh against the view volume, and simultaneously build a
single triangle strip for the entire mesh. We first describe our main
approach to refinement, and follow with details of how to imple-
ment each of its components.

3.1 Top-Down Mesh Refinement
There are two important classes of meshes used for view-dependent
refinement: general, unstructured meshes (sometimes called trian-
gulated irregular networks, or TINs), and regular (or semi-regular)
meshes with subdivision connectivity. Whereas TINs have the po-
tential to represent a surface with fewer triangles for a given er-
ror tolerance, the simplicity of regular subdivision hierarchies make
them more appropriate for our purpose.
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Figure 1: Edge bisection hierarchy. The arrows correspond to parent-child relation-
ships in the directed acyclic graph of mesh vertices.

In our refinement algorithm, we use a particular type of sub-
division based onlongest edge bisection[8, 17, 23]. The meshes
produced by this subdivision scheme, also called 4-k meshes [25],
right-triangulated irregular networks [10], and restricted quadtree
triangulations [19], have the property that they can be refined lo-
cally without having to maintain the entire mesh at the same reso-
lution (see Figure 10, for example). In the edge bisection scheme,
an isosceles right triangle is refined by bisecting its hypotenuse,
thus creating two smaller right triangles (Figure 1). Starting with
a coarse base mesh (typically two or four triangles), an adaptive,
recursive refinement of the mesh is made. The refinement crite-
rion, i.e. whether to split a triangle in two, is generally based on
whether the triangle approximates the corresponding part of the
original high resolution mesh well enough. Forview-dependentre-
finement, this criterion also depends on factors such as the relative
position and orientation of the viewer and the triangle.

The vertices introduced at the edge midpoints in the subdivision
map directly to points on a regular, rectilinear grid. Thus it is nat-
ural to use the edge bisection hierarchy as a multiresolution repre-
sentation for approximating height fields and terrain surfaces. As in
other methods based on edge bisection, the dimensions of the un-
derlying grid are constrained to2n/2 + 1 vertices in each direction,
wheren is the number of refinement levels.

It is also possible to perform the inverse of refinement—
simplification—by starting with the highest resolution mesh and
recursively merging pairs of triangles that satisfy a simplification
criterion. A significant disadvantage of simplification versus re-
finement is that its computational complexity depends on the size
of the highest resolution mesh, whereas the refinement complexity
is linear in the size of the approximating mesh.

The mesh produced by edge bisection can be represented as a
directed acyclic graph(DAG) of its vertices. A directed edge(i, j)
from i to one of its childrenj in the DAG corresponds to a triangle
bisection, in whichj is inserted on the hypotenuse and connected
to i at the right-angle corner of the triangle (Figure 1). Thus, all
non-leaf vertices not on the boundary of the mesh are connected to
four children in the DAG, and have two parent vertices. Boundary
vertices have two children and one parent. For a given refinement
M of a mesh, we say that a vertex isactiveif it is included inM .
Furthermore,M is valid if it forms a continuous surface without
any T-junctions and cracks. Whether produced by simplification or
refinement, forM to be valid it must satisfy the following property:

j ∈ M =⇒ i ∈ M j ∈ Ci (1)

whereCi is the set of children ofi in the DAG. That is, for a vertex
j to be active, its parents (and by induction all of its ancestors)
must be active. Even when the DAG traversal is top-down, ensuring
this property is not as easy as it may seem, since it is possible to
reachj in the DAG without visiting one of its two parents. One
solution to enforcing the validity of the mesh is to maintain explicit
dependencies between each child and its parents; whenever a vertex
is activated, the chain of dependencies is followed, and all ancestor
vertices are activated [17]. However, this approach is inefficient,
both in terms of computation and storage. Our approach, instead,
is to satisfy Property 1 by ensuring that the error terms used in the
refinement criterion are nested, thereby implicitly forcing all parent
vertices to be activated with their descendants.

3.1.1 Refinement Criterion
The idea of using nested errors is not new. Blow [3] describes a
method based on nested spheres. Each sphere is centered on the
positionpi of a mesh vertexi, and represents the isocontour of
i’s projected screen space errorρi = ρ(δi,pi, e), whereδi is an
object (or world) space error term fori, ande is the viewpoint.1

That is,ρi is constant for all viewpoints on the sphere’s surface.
For a fixed screen space error toleranceτ , the isocontour for which
ρi = τ divides space into two halves;i is active when the viewpoint
is inside the sphere (ρi > τ ), and inactive for viewpoints outside
it (ρi < τ ). Using these spherical isosurfaces, Blow constructs a
forest of nested sphere hierarchies, in which each parent sphere con-
tains its child spheres. The vertices associated with these spheres
need not be related in the refinement—as long as the viewpoint is
outside a particular sphere, none of the vertices in the sphere’s sub-
tree can be active, which allows large groups of vertices to be deci-
mated quickly.

While theoretically simple, this method has a number of draw-
backs. First, to ensure the nesting,τ must be fixed up-front. Sec-
ond, the method is tied to a particular error metric; a metric based
on distance alone. An orientation sensitive metric, such as the one
in [17], does not necessarily lead to isosurfaces that have good nest-
ing properties. Third, without maintaining explicit dependencies
between vertices, or artificially inflating the spheres wherever nec-
essary, Property 1 will generally not be satisfied, resulting in cracks
in the mesh. Finally, every tree in the sphere forest must be visited
during refinement. Since this forest can be arbitrarily large, further
clustering of the trees may be necessary.

Our approach bears some resemblance to Blow’s, but avoids
many of its undesirable features. We, too, use a nested DAG of
spheres, but for a different purpose, and its structure is given by the
relationship between vertices in the refinement. In the discussion
below, it is unimportant how the error termsδ andρ are measured—
we will discuss possible error metrics later in Section 3.1.2. How-
ever, we require thatρ(δi,pi, e) increases monotonically withδi

whenpi ande are fixed (a reasonable assumption). Using these
definitions, a sufficient condition for satisfying Property 1 is

ρ(δi,pi, e) ≥ ρ(δj ,pj , e) ∀j ∈ Ci

To guarantee this property, we could compute an adjusted projected
error for i by taking the maximum ofρi andρj for all childrenj.
However, we need this relationship to be transitive, meaning that it
would have to hold not only fori and its children, but also for all
of its descendants. Visiting every descendant of each active vertex
at run-time is clearly impractical for large terrains, since the set of
descendants increases exponentially in size. Instead, we compute a
lower boundρ∗

i ≥ ρi by making use of our sphere hierarchy.
Note thatρi is made up of two distinct components: an object

space error termδi; and a view-dependent term that relatespi and
e. Our approach is to separate the two and guarantee a nesting for
each term. Let

δ∗i =

{
δi if i is a leaf node
max{δi, max

j∈Ci

{δ∗j }} otherwise

Then clearlyδ∗i ≥ δ∗j for j ∈ Ci. Due to the monotonic relation-
ship betweenρi andδi, we must haveρ(δ∗i ,pi, e) ≥ ρ(δi,pi, e),
which ensures that there is no loss in visual accuracy. We don’t
necessarily haveρ(δ∗i ,pi, e) ≥ ρ(δ∗j ,pj , e) for j ∈ Ci, however,

1In the remainder of this paper, we assume that the generic screen space
error ρi is a function of the position ofi and the viewpoint. Some error
metrics may measure error at points other than the vertex positions (e.g.
over entire triangles), and may depend on additional view information (e.g.
gaze direction). It should be straightforward to generalize our definitions to
such error metrics.
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Figure 2: 2D analogue of the nested sphere hierarchy used for refinement and view
culling. The four triangles are associated with the vertices at their right-angle corners.
Notice that the bounding spheres do not completely contain their corresponding trian-
gles on the bottom two levels in the DAG, but do contain them on level 3 and above.

since an error projected frompj may be arbitrarily larger than an
error projected frompi (e.g. the viewpoint may be close topj but
far from pi). Essentially, we would like to add topi in the pro-
jection the set ofpj for all descendantsj of i, and compute the
maximum projection ofδ∗i from this set of points. Again, this is
impractical, and we resort to a superset of points that is more easily
expressed, defined by a ballBi of radiusri centered onpi. Define

ri =

{
0 if i is a leaf node
max
j∈Ci

{‖pi − pj‖ + rj} otherwise

ThenBi ⊇ Bj for j ∈ Ci, i.e. the ball hierarchy is nested. A 2D
example of this nesting is shown in Figure 2. Finally, we define the
adjusted projected error as

ρ∗
i = max

x∈Bi

ρ(δ∗i ,x, e)

Becauseδ∗i ≥ δ∗j andBi ⊇ Bj , we must haveρ∗
i ≥ ρ∗

j for j ∈ Ci.
Consequently, ifj is active, then so is its parenti, which is what we
set out to show.

To computeρ∗
i at run-time, we need to perform a constrained

optimization over the ballBi, which typically reduces to an opti-
mization over the boundary ofBi. This may seem like an expensive
process. However, it is generally easy to find a closed form expres-
sion for the minimum that can be pre-computed, and we will see
in Section 3.1.2 how a metric based on distance alone can be ex-
pressed very concisely. It is interesting to note that this approach
to computing lower error bounds is similar to the strategy used by
Lindstrom et al. [17], in which an optimization over nested bound-
ing boxes is done for coarse-grained simplification and refinement
of large blocks of vertices.

During pre-processing of the data set, we computeδ∗ andr for
each vertex. In addition to the vertex’s elevation (and coordinates
in the parameter plane, if so desired), these are the only parameters
needed in our top-down refinement algorithm. Given this general
framework for refinement, we will now briefly discuss how to com-
pute actual screen space errors for different error metrics.

3.1.2 Error Metrics

In this section, we consider possible object space (δ) and screen
space (ρ) error metrics. Perhaps the most common object space
error measure for height fields is the vertical distance between cor-
responding points in the original and the approximating mesh. For
simplicity, these errors are often computed at the height field ver-
tices only [17, 23], but may be computed over triangles or even
larger regions of influence associated with a vertex [8, 15]. Our
framework accommodates both of these approaches, since the posi-
tion or areal extent of the object space error can always be included
in a vertex’s bounding sphere by inflating it wherever necessary.

Object space errors can also be measured in relative terms, be-
tween two consecutive levels of refinement [17], or in absolute
terms [8], with respect to the highest resolution mesh. The choice
between relative and absolute errors is orthogonal to our refinement
method, but should be made up-front since the errors need to be
computed and propagated consistently during pre-processing.

Given an object space measure of errorδ, a view-dependent al-
gorithm projectsδ onto the screen, resulting in a screen space error
ρ(δ). While perspective projection is most commonly used in ter-
rain visualization, it involves problems with singularities and can
be somewhat computationally inefficient. Therefore it is common
in view-dependent algorithms to substitute the distance along the
view direction with the absolute distance, which is then used to at-
tenuate the errors [8, 15, 17]. The most simple metric of this form
can be written as

ρi = λ
δi

‖pi − e‖ (2)

i.e. the projected error decreases with distance from the viewpoint.
For the usual perspective projection onto a plane,λ = w

2 tan ϕ/2
,

wherew is the number of pixels along the field of viewϕ. Equa-
tion 2 is in actuality a projection onto a sphere and not a plane, so
a more appropriate choice forλ is λ = w

ϕ
. We then compareρ

against a user-specified screen space error toleranceτ .
In our refinement procedure, we need to find the maximum pro-

jectionρ∗
i over a set of pointsx ∈ Bi (Section 3.1.1). For Equa-

tion 2 the maximum projection occurs where‖x−e‖ is minimized.
For viewpoints insideBi, this term is zero, and we activatei. If
e 6∈ Bi, then the minimum is‖pi − e‖ − ri, and our maximum
screen space error becomes

ρ∗
i = λ

δi

‖pi − e‖ − ri

Comparingρ∗
i againstτ and rearranging and squaring some terms,

we obtain

active(i) ⇐⇒ λ
δi

‖pi − e‖ − ri
> τ

⇐⇒ λ

τ
δi > ‖pi − e‖ − ri

⇐⇒ ( 1
κ
δi + ri)

2 > ‖pi − e‖2 (3)

whereκ = τ
λ

is constant during each refinement. The above ex-
pression involves only six additions and five multiplications, and
is therefore very efficient to evaluate. Note that Equation 3 can be
used whether the viewpoint is contained ini’s bounding sphere or
not. We use this as the default error metric in our terrain visualiza-
tion system, and report the results of using it in Section 5.

If object space errors are measured vertically, then errors viewed
from above appear relatively smaller than errors viewed from the
side. Lindstrom et al. [17] describe an orientation sensitive metric
that exploits this fact. While it is possible to derive a simple ex-
pression for such a metric for use with our refinement algorithm,
empirical results observed by us and Hoppe [15] indicate that the
reduction in mesh complexity over a purely distance based metric
is on the order of a few percent. Therefore, we will not discuss this
metric here in more detail.

3.1.3 Run-Time Refinement
With all the necessary pieces in hand, we now summarize the al-
gorithm for top-down refinement and on-the-fly triangle strip con-
struction. Pseudo-code for these steps is listed in Table 1. The re-
finement procedure builds a triangle stripV = (v0, v1, v2, . . . , vn),
that is represented as sequence of vertex indices.2 This triangle strip

2An OpenGLimplementation would make repeated calls toglVertex
with this sequence of vertices.



tstrip-append(V, v, p)

1 if v 6= vn−1 and v 6= vn then
2 if p 6= parity(V ) then
3 parity(V )← p

4 else
5 V ← (V, vn−1)

6 V ← (V, v)

submesh-refine(V, i, j, l)

1 if l > 0 and active(i) then
2 submesh-refine

(
V, j, cl(i, j), l− 1

)
3 tstrip-append(V, i, l mod 2)

4 submesh-refine
(
V, j, cr(i, j), l− 1

)

mesh-refine(V, n)

1 parity(V )← 0

2 V ← (isw , isw )

3 submesh-refine(V, ic , is , n)

4 tstrip-append(V, ise , 1)

5 submesh-refine(V, ic , ie , n)

6 tstrip-append(V, ine , 1)

7 submesh-refine(V, ic , in , n)

8 tstrip-append(V, inw , 1)

9 submesh-refine(V, ic , iw , n)

10 V ← (V, isw )

Table 1: Pseudo-code for recursive mesh refinement and triangle stripping.

construction is the same as in [17]. A vertexv is appended to the
strip using the proceduretstrip-append (Table 1). Line 5 is used
to “turn corners” in the triangulation by effectively swapping the
two most recent vertices, which results in a degenerate triangle that
is discarded by the graphics system [9]. The proceduresubmesh-
refine corresponds to the innermost recursive traversal of the mesh
hierarchy, wherecl andcr are the two child vertices of the DAG
parentj (pg in Figure 5(b)) within the domain of the current trian-
gle. We will discuss how to computecl andcr in Section 4. Notice
thatsubmesh-refine is always called recursively withj as the new
parent vertex, and the condition on line 1 is subsequently evaluated
twice, once in each subtree. Because this evaluation constitutes a
significant fraction of the overall refinement time, it is more effi-
cient to move it one level up in the recursion, thereby evaluating it
only once and then conditionally making the recursive calls.

Finally, the outermost proceduremesh-refine starts with a base
mesh of four triangles (Figure 1(a)), and callssubmesh-refine
once for each triangle. Heren is the number of refinement lev-
els, ic the vertex at the center of the grid,{isw , ise , ine , inw} the
four grid corners, and{in , ie , is , iw} the vertices introduced in the
first refinement step (Figure 1(b)). The triangle strip is initialized
with two copies of the same vertex to allow the condition on line
1 in tstrip-append to be evaluated. The first vertex,v0, is then
discarded after the triangle strip has been constructed.

For applications that demand interactive visualization and the
highest possible frame rates, it is common to parallelize the oth-
erwise sequential, interleaved tasks of refinement and rendering as
two asynchronous processes or threads [16, 22]. In this model, the
render thread is periodically and asynchronously supplied with a
list of geometry to render by the refinement thread. This “display
list” is then used, and potentially reused over several frames, until
a newly refined mesh is obtained. Our terrain visualization system
allows this multi-threaded mode of rendering, in addition to the tra-
ditional sequential mode of processing.

3.2 View Culling
The rendering performance of our terrain visualization system is
substantially improved by culling mesh triangles that fall outside
the view volume. Our view culling, which is done simultaneously
with the refinement, exploits the hierarchical nature of the subdivi-
sion mesh, and culls large chunks of triangles high up in the mesh
hierarchy whenever possible. Our approach is based on the culling
algorithm outlined in [8], but is somewhat more efficient. In par-
ticular, we exploit the nested bounding sphere hierarchy to perform
view culling, similar to [24]. Note that the bounding sphere for a
vertexi contains the vertices of all descendants ofi. Thus, if the
bounding sphere is not visible, then neitheri nor its descendants
will appear on the screen. It is possible in theory for a small piece
of a trianglet that hasi or one of its descendants as a vertex to be
visible, even though none of these vertices is visible. By excluding
i, a coarser triangle thant will be rendered. Note, however, that this
can only happen at the periphery of the screen, and the resulting er-

ror of using a triangle of coarser resolution thant must be small in
relation to the size oft. In practice, the bounding sphere hierarchy
is intrinsically loose enough that these errors never occur above the
second finest refinement level (see Figure 2), and we have seen no
visible artifacts of culling the mesh.

The culling algorithm makes use of the six planes of the view
frustum. The implicit plane equations for these are computed in
object space coordinates and are passed along in the refinement. As
in [8], we maintain one flag for each plane, indicating whether the
bounding sphere is completely on the interior side of the plane with
respect to the view volume. If this is the case, then all descendants’
bounding spheres must also be on the interior side, and no further
culling tests are necessary. If the sphere is entirely outside any one
of the six planes, the vertex and its descendants are culled, and the
refinement recursion terminates. Thus, view culling is done only
for those spheres that straddle the planes of the view volume.

Figure 11 illustrates the advantage of performing view culling.
From this figure, it is also evident that the mesh resolution drops
rather sharply immediately outside the view volume. Still, some
features towards the left edge of the mesh in Figure 11(b) remain,
as they are too close to the top plane of the view frustum.

Note that because the bounding spheres are nested, the culling
condition is consistent among parents and children, i.e. a child is
visible only if its parents are. As a consequence, view culling does
not introduce any T-junctions or cracks in the mesh—it always re-
mains a continuous surface everywhere. This is a desirable feature
when the refinement and render stages are asynchronous in that, re-
gardless how much the refinement thread falls behind, the render
thread always has a continuous mesh to display.

4 DATA LAYOUT AND INDEXING
This section addresses the problem of laying out the terrain data on
disk to achieve efficient out-of-core performance. In the spirit of
our overall approach to terrain visualization, our goal is to have a
very simple mechanism to perform out-of-core paging of the data,
while maintaining high performance. In particular, we take advan-
tage of the paging mechanism of the operating system by using the
mmapfunction.3 mmapassociates a part of the logical address space
of the computer with a specific disk file. Using this mechanism
the external memory part of our implementation consists simply of
a call tommapto associate the memory address of an array with
the terrain information (elevation values, precomputed errors, etc.)
stored on disk. After this step the array of terrain vertices is used
as if it were allocated in main memory, while the operating system
takes care of paging the data from disk as needed.

The main advantage of this approach is its simplicity. Moreover,
since the paging mechanism is not specialized for one particular
out-of-core algorithm, we can perform a fair comparison among
different data layout schemes. In this paper we study the perfor-
mance potential intrinsic in different data layouts, without adding
any specialized I/O layer with pre-fetching mechanisms that might
further improve the out-of-core performance of the terrain traversal.

Given the framework described above, the external memory pro-
cessing problem can be reduced to a data layout problem. We know
the structure of the terrain traversal algorithm, and we have a mech-
anism that hides the need for data paging from the application. Us-
ing this framework, we need to determine: (i) a way of storing the
raw data that minimizes paging events, and (ii) an efficient proce-
dure for computing the index of the data element in the given re-
finement order, so that no significant added cost is introduced in the
refinement process.

The following two subsections describe a data layout scheme
that satisfies requirements (i) and (ii), and that has a particularly
straightforward implementation.

3The equivalent Windows function is calledMapViewOfFile .



Figure 3: Top row: First three levels of the white quadtree. Bottom row: A complete
black quadtree is obtained by adding the crossed ghost vertices to it.

Figure 4: Illustration of embedding the top two levels of the white quadtree in the
unused parts of the black quadtree.

4.1 Interleaved Quadtrees
On the basis of the edge bisection refinement algorithm, each vertex
(apart from the four corners of the grid) can be labeled as white, if
introduced at an odd level of refinement, or black, if introduced at
an even level. Figure 1 shows this classification for the first four lev-
els of refinement. The top row of Figure 3 shows how the sequence
of white vertices forms a quadtree—thewhite quadtree, Qw. Each
white node is in fact the center of a square tile in a quadtree decom-
position of the rectilinear grid. Interestingly the black vertices can
also be considered as part of ablack quadtree, Qb. Figure 3 shows
as crossed circles the vertices that need to be added outside the rec-
tilinear grid to form a complete black quadtree. We will refer to
these additional vertices as “ghost vertices.” The black quadtree is
rotated 45 degrees with respect to the white quadtree. Note thatQb

does not start at the root but at the first level of refinement. Adding
a virtual root node makesQb one level taller thanQw.

Since the traversal of the DAG (see Section 3.1) is performed
top-down, starting form the root, good data locality can be achieved
by storing the data from coarse to fine levels. Within each level,
the data should be stored so as to preserve neighborhood properties
to the extent possible; vertices that are geometrically close should
be stored close together in memory. For a quadtree, this can be
achieved by using the order induced by the following formula that
computes the indexc(p, k) of thekth child of the parent nodep:

c(p, k) = 4p + k + m with k = 0, 1, 2, 3 (4)

where m is a constant dependent on the index of the root and
the index distance between consecutive levels of resolution. Us-
ing this data layout, all the vertices on the same level of resolu-
tion are stored together, starting with the coarsest level. The in-
dex distance between two vertices on the same level depends on
the distance to their common ancestor in the quadtree, e.g. any
four siblings are stored in consecutive positions. For this indexing
scheme, we interleave the black and the white quadtree, with roots
rb = 3 andrw = 4. Sincerb is not used in practice, we can as-
sign the first four indices (from 0 to 3) to the corners of the grid.
The first child ofrb is stored immediately afterrw, and we have
c(rb, 0) = 4 · 3 + 0 + m = 5 andc(rw, 0) = 4 · 4 + 0 + m = 9,
which both implym = −7. Notice in Figure 3 that the ghost ver-
tices inQb are not used. Because the data is eventually stored as
a single linear array, this results in unwanted “holes” in the array.

vl vr

va

vm

(a)

pg

pq

cl cr

(b)
s=2

n=0

w=3 e=1

(c)
sw=0 se=1

nw=3 ne=2

(d)

Figure 5: Naming conventions for the nodes in the refinement hierarchy. (a) Refine-
ment of a single triangle using linear indexing. (b) Refinement using the interleaved
quadtrees. (c, d) Sibling vertices in the black and white quadtrees, respectively.

It is however possible to reduce the amount of unused space. First
observe that the total number of ghost vertices is roughly twice as
large as the number of white vertices. As a consequence, instead
of using two interleaved quadtrees, we can use the black quadtree
only and store the white nodes in place of (a subset of) the ghost
nodes. We divideQw into four subtrees, rooted at the children of
rw. Figure 4 shows the insertion of these subtrees into the unused
space ofQb. The use of a single quadtree also affects the value of
the constantm. In this case we haverb = 4 (this value is actually
used for the white root) andc(rb, 0) = 5 which impliesm = −11.

One drawback of our quadtree-based indexing schemes is that
they use a non-contiguous address space. In the case of interleaved
quadtrees, the unused ghost vertices result in a waste in storage
resources of roughly 66% of the input data. This overhead is re-
duced to 33% in the storage layout where the white quadtree is
embedded in the black quadtree. This overhead can be completely
eliminated by using a data layout based on a hierarchical version of
the Lebesgue Z-order space filling curve. Because the implementa-
tion of this scheme is not as straightforward as the quadtree-based
schemes described above, we do not provide the details of the com-
putations involved in this indexing scheme, but refer the interested
reader to [20]. In Section 5 we include empirical results of the per-
formance achieved both with the quadtree-based schemes discussed
here and with the hierarchical Z-order space filling curve.

4.2 Efficient Index Computation
To avoid any overhead in the refinement process, we need an ef-
ficient method for computing the indices of the vertices visited in
our top-down traversal of the terrain. For data stored in linear order
(standard row major matrix layout), computing the child indices in
the DAG can be made easy by carrying along three indices in the
refinement:(vl, va, vr). These indices make up the current triangle
t in the refinement, and their subscripts correspond to the left, apex,
and right corner of the triangle (Figure 5(a)). The two child trian-
gles oft in the recursion can then be written astl = (vl, vm, va)
andtr = (va, vm, vr). Herevm corresponds to the vertex at the
midpoint of the edge(vl, vr), which can be computed simply as the
averagevm = 1

2
(vl + vr).

For the indexing scheme based on the interleaved quadtrees, we
make use of the parent-child relationship between vertices in the
quadtrees. Consider one refinement step as shown in Figure 5(b).
The new white verticescl (left child) andcr (right child) have a
common blackgraph parentpg in the refinement DAG. Moreover
the graph parent ofpg is also thequadtree parentpq of cl andcr.
Based on this observation, the indicescl andcr can be computed
from the index of their quadtree parentpq using Equation 4. The
relative positions ofpq andpg determine which two branches (the
values of the indexk) need to be used to reachcl andcr from pq. In
numbering the four children of a common parent, we use the con-
ventions shown in Figure 5(c, d). We have chosen these particular
labels for the branches carefully to allow an efficient child index
computation without having to use any lookup tables. Using these
conventions, we can compile the two transition tables shown in Ta-
ble 2. Note that the value ofk can be determined from the lowest
two bits of the vertex index. Because of considerable redundancy
in the transition tables, and due to our choice of branch labels, the
transition tables, and consequently the child indicescl andcr, can
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Table 2: Transition tables used to determine the left (kl) and right (kr) branch to be
used in Equation 4 for quadtree parentpq and DAG parentpg . The symbols in the
tables and their values follow the conventions of Figure 5(c, d).

be expressed concisely using a few arithmetic operations:

cl(pq, pg) = 4pq + ((2pq + pg + m + 1) mod 4) + m

cr(pq, pg) = 4pq + ((2pq + pg + m + 2) mod 4) + m

These simple equations are used in thesubmesh-refine procedure
in Section 3.1.3.

5 RESULTS
In this section, we present the results of running an implementation
of our terrain visualization system on several computer architec-
tures. We used a two-processor 800 MHz Pentium III PC running
Red Hat Linux, with 900 MB of RAM and GeForce2 graphics. To
push the out-of-core aspect of our system, we artificially limited
the memory configuration of this machine to 64 MB for some of
our results. A two-processor 300 MHz R12000 SGI Octane with
Solid Impact graphics and 900 MB of RAM was also used to mea-
sure memory coherency, while we used a 48-processor 250 MHz
R10000 SGI Onyx2 with 15.5 GB of RAM and InfiniteReality2
graphics to avoid being graphics and memory limited and to allow
the raw refinement speed to be measured. For all results, we used a
data set over the Puget Sound area in Washington, which is made up
of 16, 385 × 16, 385 vertices at 10 meter horizontal and 0.1 meter
vertical resolution.4 This data set occupies roughly 5 GB on disk.
The window size was in all cases640 × 480 pixels.

5.1 View-Dependent Refinement
We will first discuss the performance of our view-dependent refine-
ment algorithm. We used the distance-based error metric described
in Section 3.1.2 for all results presented here. To evaluate the ef-
ficiency in mesh complexity for a given accuracy, we recorded for
1,000 views the number of rendered triangles obtained using both
a bottom-up simplification of the terrain (which produces the min-
imal number of triangles for a given threshold) and our top-down
scheme. Figure 6 shows a histogram of the distribution of views in
which our suboptimal mesh contained a certain percentage of tri-
angles beyond the minimum possible. Our mesh generally contains
more triangles than necessary due to the requirement of nested er-
rors and occasional inflated error terms. It is interesting to note,
however, that the top-down method produces meshes that are just a
few percent larger than minimal for a one-pixel error tolerance.

We next evaluate the performance increase due to the use of
culling and multi-threading (one thread each for rendering and re-
finement). These results are summarized in Table 3 and plotted
in Figure 13. The graph for multi-threading with culling in Fig-
ure 13(a) corresponds to the first sequence shown in the accompa-
nying video. We were able to maintain 60 frames per second during
nearly the entire fly-over. When the number of rendered triangles
exceeded 50,000, however, the frame rate slowed briefly. Based on
these numbers, we expect our algorithm to surpass the performance
of Hoppe’s method [15]. He reports a rendering speed of 8,000
triangles at 60 Hz on an SGI Onyx InfiniteReality, whereas using
multi-threading we were able to sustain 40,000 rendered triangles

4We obtained a subset of the freely available data fromhttp://duff.
geology.washington.edu/data/raster/tenmeter/bil10/.
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Figure 6: Mesh complexity distribution for the top-down scheme in relation to the
optimal mesh over 1,000 different views. The error tolerance isτ = 1 pixel.

platform
multi- view time rendering refinement

threading culling (s) (Mtri/s) (Mtri/s)

15.5 GB SGI
317.43 0.939 1.435

X 75.50 0.595 1.466
X X 47.63 0.944 1.396

900 MB PC
170.70 1.683 2.350

X 43.89 0.980 1.860
X X 38.62 1.113 1.777

Table 3: Flight time and average performance for 2816-frame fly-over (see also Fig-
ure 13). The rendering performance is measured as the number of rendered triangles
over the frame time, which includes the refinement time in single-threaded mode.

at the same rate. Figure 13(a) also demonstrates a clear advantage
of using both culling and multi-threading.

Figure 13(b) highlights the refinement performance, with and
without culling, measured in number of rendered triangles divided
by the wall clock refinement time. For low triangle counts, the
refinement runs faster when view culling is disabled, as expected.
Notice, however, that as the mesh complexity increases towards the
middle of the graph, the lack of view culling leads to a significant
decrease in performance. Conversely, the use of view culling results
in a relative speedup. We attribute this result to caching behavior—
as the triangle strip grows, an increasing number of cache misses
are made, which slows down the method that did not use culling.
Meanwhile, when a large fraction of triangles are culled, the over-
head of making recursive function calls dominates, as evidenced by
the sharp drop in performance near frame #512.

Finally, we evaluated the efficiency of using a single triangle
strip. We found that the ratio of triangle strip vertices to the number
of non-degenerate triangles averaged 1.56 vertices/triangle, with
virtually no variance. This number should be compared to 3 ver-
tices/triangle for a list of independent triangles.

5.2 Data Layout
In this section, we compare the memory performance of four differ-
ent indexing schemes: the single quadtree scheme from Section 4.1,
where the “white” tree is embedded in the “black” tree; the Z-order
indexing scheme; a blocking scheme based on32×32 tiles from the
highest resolution data; and a standard matrix layout in row major
form. For all these methods, we stored the fields(p, δ∗, r), which
together occupy 20 bytes, with each vertex (see Section 3). Our fo-
cus here is not on the storage efficiency of the vertex records—it is
entirely possible to compress or even eliminate some fields in this
record. Rather, we assume fixed-length records and focus on how
efficient the different indexing schemes are at accessing them.

Figure 7 shows the total number of page faults, after executing
the same flight path as in the video, for varying values of the er-
ror toleranceτ . Smaller values ofτ result in larger meshes being
rendered and more data being paged in. Clearly, the hierarchical in-
dexing schemes (quadtree-based and Z-order) greatly outperformed
the linear and block-based schemes, and often lead to drastically
improved paging speeds (Figure 12). Perhaps surprising, the block-
based scheme, which is often used for terrains, performs the worst
of them all. This is because the refined mesh rarely consists of
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Figure 9: Cumulative number of page faults over time on
64 MB PC.

groups of many vertices at the highest resolution. Instead, a hand-
ful of vertices are needed from each block, requiring virtually the
entire terrain to be paged in during each refinement pass. A more
reasonable block-based indexing scheme would be to subsample the
data and create a multiresolution pyramid, allowing more coherent
access to different resolutions of data. However, such an indexing
scheme uses multiple indices for each vertex, which would arguably
make for an unfair comparison with our other indexing schemes.

We also investigated the paging behavior over time. Results for
the SGI Octane are shown in Figure 8, while the PC results are
shown (on a log-log scale) in Figure 9. These graphs show that
there is a significant hit at startup, when no data is memory resident,
after which pages stay in user memory or can be reclaimed quickly
from the operating system’s cache. Surprisingly, the quadtree-based
scheme, which requires 33% of unused space, performs slightly
better than the Z-order scheme (Figure 8). Unfortunately we have
no plausible explanation for this behavior.

Finally, we measured the raw in-core refinement speed of all in-
dexing schemes. Due to better cache locality, the quadtree scheme,
while involving a few more operations, is still twice as fast as the
linear scheme, and is also twice as fast as the more complex Z-
order scheme. This suggests that the linear scheme is inferior in all
aspects to quadtree-based indexing, with the exception of memory
overhead. We plan to investigate alternative indexing schemes that
have the same desirable properties as the quadtree scheme, but with
higher memory efficiency.

6 SUMMARY AND FUTURE WORK
We have presented algorithms for two important components of
large-scale terrain rendering: a method for efficient view-dependent
refinement; and an indexing scheme for organizing the data in a
memory friendly manner. Our emphasis has been on the simplicity
and efficiency of these methods—the core of these algorithms can
be implemented in as little as a few dozen lines of C code. In spite
of their simplicity, the rendering and paging speed of our algorithms
compete with the state of the art in terrain visualization.

We see several avenues for future work. As demonstrated in [25],
there is no need for the refinement to insert vertices at edge mid-
points. Using our current data structures, which store thexyz-
coordinates with each vertex, we could perform a data-dependent
triangulation that still has the same subdivision connectivity. This
is particularly desirable for representing features such as roads and
rivers. So far, we have not employedgeomorphingto smooth out
transitions in mesh resolution, even though we have not found these
transitions to be particularly distracting. We believe that our frame-
work could easily support geomorphing with no significant code
changes. We would also like to compare and integrate different er-
ror metrics and indexing schemes into our framework. While con-
trary to the spirit of our approach, more work needs to be done to
address the issue of paging efficiency. By using prediction and pre-
fetching, it may be possible to further improve the rate at which
data is paged in and integrated with the multiresolution terrain.
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(a) τ = 2 pixels; 79,382 triangles. (b) τ = 2 pixels; 79,382 triangles. (c) τ = 4 pixels; 25,100 triangles.

Figure 10: View of Mount Rainier, Washington. (b, c) Edge bisection subdivision meshes for two different screen space error thresholdsτ .

(a) Without view culling; 97,435 triangles. (b) With view culling; 25,100 triangles. (c) View culling against rectangle.

Figure 11: Examples of view frustum culling. The mesh is everywhereC0 continuous, whether culled or not. (a, b) The view frustum is shown in semi-transparent violet, with the
viewer looking across the terrain from the right. This view is the same as in Figure 10. (c) The mesh resolution drops quickly outside the view frustum (shown as a violet rectangle).

(a) Frame #1000. (b) Frame #1350. (c) Frame #1850. (d) Frame #2000. (e) Frame #2200.

Figure 12: Frames from two multi-threaded fly-over sequences using linear, row major indexing (top) and quadtree-based indexing (bottom). The flightpaths for the two sequences
are the same. The improved cache performance of the quadtree-based scheme results in more detail being paged in more quickly.
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(a) Frame time (thin lines) and number of rendered triangles (thick lines).
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(b) Refinement performance over time.

Figure 13: In-core rendering and refinement performance on SGI Onyx2 over several thousand frames during a terrain fly-over (see accompanying video).The curves correspond
to the use of single-threading, with and without culling, and multi-threading with culling. The hierarchical indexing scheme was used in all three runs. (a) Using multi-threading a
steady 60 Hz is maintained during nearly the entire flyover. The number of triangles for the two schemes that used culling coincide, therefore the graphfor only one of them is shown.
(b) The vertical axis corresponds to the number of non-degenerate triangles in the triangle strip divided by the (wall clock) refinement/view cullingtime.


